Computer Vision Techniques for Automatic Structural Assessment of Underground Pipes
نویسندگان
چکیده
Pipeline surface defects such as cracks cause major problems for asset managers, particularly when the pipe is buried under the ground. The manual inspection of surface defects in the underground pipes has a number of drawbacks, including subjectivity, varying standards, and high costs. An automatic inspection system using image processing and artificial intelligence techniques can overcome many of these disadvantages and offer asset managers an opportunity to significantly improve quality and reduce costs. This article presents a system for the application of computer vision techniques to the automatic assessment of the structural condition of underground pipes. The algorithm consists of image preprocessing, a sequence of morphological operations to accurately extract pipe joints and laterals (where smaller pipe is connected to main bigger pipe), and statistical filters for detection of surface cracks in the pipeline network. The proposed approach can be completely automated and has been tested on over 1,000 scanned images of underground pipes from major cities in North America. ∗To whom correspondence should be addressed. E-mail: sunil@ engr.psu.edu.
منابع مشابه
Automated Condition Assessment of Buried Pipeline Using Computer Vision Techniques
Closed Circuit Television (CCTV) surveys are used widely in North America to assess the structural integrity of underground pipes. The video images are examined visually and classified into grades according to degrees of damage. The human eye is extremely effective at recognition and classification, but it is not suitable for assessing pipe defects in thousand of miles of pipeline images due to...
متن کاملComparison of Different Targets Used in Augmented Reality Applications in Ubiquitous GIS
Drilling requires accurate information about locations of underground infrastructures or it can cause serious damages. Augmented Reality (AR) as a technology in Ubiquitous GIS (UBIGIS) can be used to visualize underground infrastructures on smartphones. Since smartphone’s sensors do not provide such accuracy, another approaches should be applied. Vision based computer vision systems are well kn...
متن کاملAutomated condition assessment of buried sewer pipes based on digital imaging techniques
Assessing the condition of underground pipelines such as water lines, sewer pipes, and telecommunication conduits in an automated and reliable manner is vital to the safety and maintenance of buried public infrastructure. In order to fully automate the condition assessment of buried pipes, it is necessary to develop a robust defect analysis and interpretation system. This paper presents the dev...
متن کاملAutomatic Detection and Localization of Surface Cracks in Continuously Cast Hot Steel Slabs Using Digital Image Analysis Techniques
Quality inspection is an indispensable part of modern industrial manufacturing. Steel as a major industry requires constant surveillance and supervision through its various stages of production. Continuous casting is a critical step in the steel manufacturing process in which molten steel is solidified into a semi-finished product called slab. Once the slab is released from the casting unit, th...
متن کاملUsing Machine Learning Algorithms for Automatic Cyber Bullying Detection in Arabic Social Media
Social media allows people interact to express their thoughts or feelings about different subjects. However, some of users may write offensive twits to other via social media which known as cyber bullying. Successful prevention depends on automatically detecting malicious messages. Automatic detection of bullying in the text of social media by analyzing the text "twits" via one of the machine l...
متن کامل